
Todo
app

Team

DDD

DDD
a Todo app

My Journey
at ZinZen.me

Me (or any developer) at some point:

• Problem:
• I need a Todo app…

… but nothing fits my needs.

• Solution:
• I’ll make one myself!

It’s not that hard – and I already have a name.

Current status

• Still tinkering…
… many versions later ☺

1. That bad?

2. That hard?

3. So little spare time?

4. Crazy? You may judge.
But first,

let’s go way back...

Domain model - version 1 - 2016
This is an anemic

or CRUD domain model.

Perfect for
simple domains

- when people already
think this way.

Most people stop here…

• What can I say…

I’m stubborn?

Well…
most people

don’t
think CRUD …

todo_repository.add(‘get TOTK’);

So how do people really think?

I want to realize Dreams,
by achieving Goals,

scheduled as Tasks.

This is a slightly more complicated…
 … but very doable!

Domain model - version 2 - 2017

Let’s cheat a bit … and say Dreams are just fuzzy Goals -

… then we only need two-level hierarchy:

Right? It’s how ‘pro’ Todo apps work...

Goal

Tasks

I schedule Tasks
by selecting a Day

… and optionally a Time.
(assume 0:00 == no Time)

There – I’m done!

People are paying
for this...

…so,
it must be good?

…of course, once I started thinking…

Fuzzy Goals like ‘make a living’ can have nested sub-Goals
with scheduling Preferences

- like ‘Project A on weekdays, daytime’
- or even be flexible - like ‘0-9 hours a day, 40h per week’

because I don’t want to manually (re)schedule stuff (over and over).

I also want to organize my Goals in a graph.

I also want to collaborate with Others
by sharing Goals/Tasks and accepting Suggestions

to improve my Goals and optimize my Calendar.

My mind, seconds later:

Goal A

Goal B Goal C

Goal D

Goal FGoal E

Tasks

TasksTasks

Person 1

Person 2

To put it simply …

I needed Donna.

Sorry.
What’s the other option? Oh yeah, the app.

OK. Now it’s complicated.

Let’s try DDD!

So, I skipped DDD and started coding - 2018

Shiny CQRS
+ Event sourcing

pattern

… yes, I CQRS’d + Event Sourced everything

• This can be combined with DDD, but is not the same as doing DDD
It was an interesting experience… and I learned a lot.

I was lost here.

CQRS DDD

ES

Intermezzo - 2020

“No comment.”

…and still lost.

By 2021 - I had tried a few tech stacks

• A QT / C++ app
• Snappy! License issue.

• A CQRS/Event-sourced Android app
• Interesting. Slow. Boilerplate.

• A cloud-based central graph database with reactive vanilla JS frontend
• … interesting opaque cloud challenges. Get support. ☺ Slow. Complex. Expensive.

No single stack
covered all needs.

What if we aligned our code paradigm
with domain properties?

The first rule of distributed computing…

Goal A

Goal B Goal C

Goal D

Goal FGoal E

Tasks

TasksTasks

Alice’s device
Goal 1

Goal 2 Goal 3

Goal 4

Goal 6Goal 5

Tasks

TasksTasks

Hamidi’s device

Task

Don’t fight
‘natural boundaries’

an offline-first PWA
person’s device domain

+
fast functional WASM

scheduler domain
+

‘dumb’ message pipe
collaboration domain

Context map - version 3 - 2021

Graph of Goals and Suggestions

Device 1

Device n

Device 2

Person’s device : fits CRUD

Collaboration : unpredictable interaction => actor/oop model

Pretty good fit!

Scheduler : fits functional style

Share Goals/Tasks

…Give/Accept Suggestions

TasksGraph of Goals

Added privacy and cost bonus

• All the extra login/cloud stuff we needed
for people to pay for a central ‘all-knowing’ coordination point

…disappeared!

• Costs per user dropped to near-zero ☺

A new person’s device generates a UUID locally
and uses that as identity!

They also run their scheduling algorithms locally … at no cost to us. ☺

Still, we ‘felt’ issues in the Scheduler domain

This time stuff is
getting quite complex…

Schedule optimization service

… so, we ‘challenged’ the domain expert …

Time constraints ≠ What I want

Surprise!

• We discovered a new domain concept: Budget
that came from code(rs)

but was relevant, hidden, in the domain

• Now all we had to agree on the name…

We settled on ‘time Budget’ … for now. ☺

Domain from person’s view - v4 - 2022

Graph of Budgets and of Goals,

Person’s device domain : fits CRUD

complemented with Suggestions from the Collaboration domain

 and Tasks from the Scheduling domain

.. this also simplified our UI/UX ☺

• Add a time Budget
per ‘area’ of your life

• … and then
 quick-add
Goals with durations1 x N x

Way simpler
than GTD!

Yes – the design still needs work…

Separating domains has more benefits

• Extra services
• specific to the domain

• Extra concepts
• specific to the domain

• Organize code in modules that ‘explain’ the domain

Modules in the Scheduler

• Modules allow a one-glance overview of the code

• Low coupling, high cohesion
• Fits in your head

• One feature, one place

• Easy to test

• Allow separating technical concerns from domain logic, like:

• Interaction with file system

• (de)serializing JSON

1

2

3

Extra concepts and services

• Activity was invented to unify Goals and Budgets
for scheduling purposes.

• Activity is only useful in the Scheduler domain,
the ‘bounded context’ of the Scheduler.

• Similarly, Suggestions can’t be found here.
They are ‘bounded’ to the Collaboration domain.

Inspired?

Thanks for listening!

and thanks to all contributors ;)

Credits for pictures via Unsplash

• Mantas Hesthaven

• Barbora Dostálová

• Annie Spratt

• Aziz Acharki

https://unsplash.com/photos/man-holding-luggage-photo-_g1WdcKcV3w?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/surface-chart-TOZWtE9CkF0?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/boy-sitting-near-table-and-about-to-blow-birthday-candles-jLQvbLPyenU?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/silhouette-of-person-jumping-in-mid-air-2fgnVgsm5uM?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Ideas to possibly expand upon:

• Explaining an aggregate – with invariance boundaries

• Technical pitfalls :
• testing at the wrong level

• Todo/Task is not an entity – it’s a value object

• What domain events do we have?

• Complexity in scheduling domain due to dates
• Very complicated business logic
• By separating the code into two steps / modules

(Activity generator and Activity placer)
we avoided the mental load/complexity of date-calculations
– reducing placing to ‘does the block size fit in the timeline gap - or not’?

	Slide 1: DDD a Todo app
	Slide 2: Me (or any developer) at some point:
	Slide 3: Current status
	Slide 4: Domain model - version 1 - 2016
	Slide 5: Most people stop here…
	Slide 6: Well… most people don’t think CRUD …
	Slide 7: So how do people really think?
	Slide 8: Domain model - version 2 - 2017
	Slide 9: There – I’m done!
	Slide 10: …of course, once I started thinking…
	Slide 11: My mind, seconds later:
	Slide 12: To put it simply …
	Slide 13: OK. Now it’s complicated.
	Slide 14: So, I skipped DDD and started coding - 2018
	Slide 15: … yes, I CQRS’d + Event Sourced everything
	Slide 16: Intermezzo - 2020
	Slide 17: By 2021 - I had tried a few tech stacks
	Slide 18: What if we aligned our code paradigm with domain properties?
	Slide 19: The first rule of distributed computing…
	Slide 20: Context map - version 3 - 2021
	Slide 21: Added privacy and cost bonus
	Slide 22: Still, we ‘felt’ issues in the Scheduler domain
	Slide 23: … so, we ‘challenged’ the domain expert …
	Slide 24: Surprise!
	Slide 25: Domain from person’s view - v4 - 2022
	Slide 26: .. this also simplified our UI/UX
	Slide 27: Separating domains has more benefits
	Slide 28: Modules in the Scheduler
	Slide 29: Extra concepts and services
	Slide 30: Inspired?
	Slide 31: Credits for pictures via Unsplash
	Slide 32: Ideas to possibly expand upon:

