a lodo app

My Journey
at ZinZen.me

Me (or any developer) at some point:

 Problem:

* | need a Todo app...
... but nothing fits my needs.

e Solution:

* I'll make one myself!
It’s not that hard —and | already have a name.

Current status

e Still tinkering...
... many versions later ©

initial commit

1. That bad? @ 1. committed 6years ago

2. That hard?

3. Solittle spare time?

4. Crazy? You may judge.

But first,
let’s go way back...

Domain model - version 1 - 2016 .

This is an anemic
struct Todo {)
id: Uuid, or CRUD domain model.

title: String,
completed: bool,

} Perfect for
simple domains

impl Repository {
pub fn add(todo: Todo) {}

pub fn remove(todo: Todo) {}
pub fn complete(todo: Todo) {} - When people alreadv

} think this way.

Most people stop here...

 What can | say...

I’'m stubborn?

2
WELN
most people
don’t
think CRUD

todo_repository.add(‘get TOTK’);

So how do people really think?

| want to realize Dreams,
by achieving Goals,
scheduled as Tasks.

This is a slightly more complicated...
. but very doablel

Domain model - version 2 - 2017

Let’s cheat a bit ... and say Dreams are just fuzzy Goals -
... then we only need two-level hierarchy: Goal

'\
IENS
struct Task {
goal id: Uuid, | schedule Tasks
start: DateTime, by selecting a Day
end: DateTime, ... and optionally a Time.

(assume 0:00 == no Time)

Right? It’s how ‘pro” Todo apps work...

@

There —1I'm donel

People are paying
for this...

...S0,
it must be good?

..0f course, once | started thinking...

Fuzzy Goals like ‘make a living” can have nested sub-Goals
with scheduling Preferences
- like ‘Project A on weekdays, daytime’
- or even be flexible - like ‘0-9 hours a day, 40h per week’
because | don’t want to manually (re)schedule stuff (over and over).

| also want to organize my Goals in a graph.

| also want to collaborate with Others
by sharing Goals/Tasks and accepting Suggestions
to improve my Goals and optimize my Calendar.

My mind, seconds later:

pret®

Person 1
Q/GOQ{ A
es* ?
(6“6 .“%.
Goal B Goal C |one®
/\4 SU
Tasks Goal D St/On.p
/ | Person 2
GoalE Goal F
/ \ /' \ 5
Tasks Tasks galeno@"’

Auto-
(re)scheduling?

i E\pa(\(\%'

S
ofer® Usea...
A é@@honp

To put it simply ...

| needed Donna. @§

Sorry.
What’s the other option? Oh yeah, the app.

OK. Now it's complicated.

Let’s try DDD!

So, | skipped DDD and started coding - 2018

aggregates
commands

crossCuttingConcerns

interfaces

Shiny CQRS
+ Event sourcing
patterr

useCaselypes

useCases

I
I
I
BB cvents
I
L
I
I

valueObjects

@

.. yes, | CQRS'd + Event Sourced everything

* This can be combined with DDD, but is not the same as doing DDD
It was an interesting experience... and | learned a lot.

| was |lost here.

Intermezzo - 2020

“No comment.”

...and still lost.

@

By 2021 - | had tried a few tech stacks

* AQT / C++app
e Snappy! License issue. NoO Sing‘e StaCk

* A CQRS/Event-sourced Android app COVE red d ” needs.

* Interesting. Slow. Boilerplate.

* A cloud-based central graph database with reactive vanilla JS frontend
e ... interesting opaque cloud challenges. Get support. © Slow. Complex. Expensive.

What it we aligned our code paradigm
with domain properties?

@

The first rule of distributed computing...

Alice’s device Hamidi’s device
Goal A Don’t fight Goal 1
7\ ‘natural boundaries’ 7\
Goal B Goal C Goal 2 Goal 3
Y/ \ an offline-first PWA Y\
IENE GoalD | person’s device domain | Tasks Task
vl + Goal 4
Goal E Goal F fast functional WASM |\
/ \ 7/ \ scheduler domain Goal5 Goal 6
IESRENS + / \ /' \
— ‘dumb’ message pipe ~ IEN S ENS
collaboration domain

Context map - version 3 - 2021

Pretty good fit!

Person’s device : fits CRUD Scheduler : fits functional style

Graph of Goals and Suggestions Graph of Goals » Tasks

Collaboration : unpredictable interaction => actor/oop model

: Share Goals/Tasks .
Devicel - / > Device 2

Device n e

Give/Accept Suggestions

Added privacy and cost bonus

* All the extra login/cloud stuff we needed
for people to pay for a central ‘all-knowing”’ coordination point

...disappeared!

* Costs per user dropped to near-zero ©

A new person’s device generates a UUID locally
and uses that as identity!
They also run their scheduling algorithms locally ... at no cost to us. ©

@

Still, we “felt” issues in the Scheduler domain

struct Goal { — _ » struct Task {
id: Uuid, Schedule optimization service e0al id: Uuid,
title: String, title: String,
completed: bool, start: DateTime,
start: DateTime, end: DateTime,
deadline: DateTime, }

duration: Duration,
on_days: Vec<Day>,

after_hours four, This time stuff is

before hour: Hour,

repeat_interval: Duration, gettlng qUite COmpleX...

.. 50, we ‘challenged’ the domain expert ...

ime constraints # What | want

struct Budget { struct Goal {
id: Uuid, id: Uuid,
title: String, title: String,
start: DateTime, total duration: Duration,
deadline: DateTime, duration_left: Duration,
on_days: Vec<Day>, start: DateTime,
after_hour: Hour, deadline: DateTime,
before hour: Hour, repeat_interval: Duration,
min_per_day: Duration, }

max_per_day: Duration,
min_per_week: Duration,
max_per_week: Duration,

Surprise!

N _
* We discovered a new domain concept: Budget

7/

that came from code(rs)
but was relevant, hidden, in the domain

* Now all we had to agree on the name...

We settled on ‘time Budget’ ... for now. ©

@

Domain from person’s view - v4 - 2022

Person’s device domain : fits CRUD

Graph of Budgets and of Goals,

complemented with Suggestions from the Collaboration domain

and Tasks from the Scheduling domain

@

Way simpler
Mygeals a4 e Add a time Budget than GTD'

per ‘area’ of your life
Work .
Goal budget e ... and then
quick-add
Goals with durations

9 hr/day, 45 hrs / week > .
000006000 Goal title

o o

- o
Goal .
Duration Due mm/dd/yyyy O
V

Yes — the design still needs work...

. this also simplified our UlI/UX ©

House chores

Between
Family time &

@ @
9 18

Hobby project i ==

@

Separating domains has more benefits

* Extra services
* specific to the domain

* Extra concepts
* specific to the domain

* Organize code in modules that ‘explain’ the domain

Vosrc
> bin
1 Vv models

& activity.rs
& budget.rs
& calendar.rs
& goalrs

& mod.rs

& task.rs

2 V' services

& activity_generator.rs

& activity_placer.rs
& mod.rs

3 v technical

& input_output.rs
& mod.rs

& lib.rs

@

Modules in the Scheduler

* Modules allow a one-glance overview of the code

* Low coupling, high cohesion
* Fits in your head
* One feature, one place
* Easy to test

* Allow separating technical concerns from domain logic, like:
* Interaction with file system
 (de)serializing JSON

oo Extra concepts and services
& budget.rs

& calendar.rs

 Activity was invented to unify Goals and Budgets
for scheduling purposes.

& goalrs
& mod.rs
& task.rs

V' services

 Activity is only useful in the Scheduler domain,
the ‘bounded context’ of the Scheduler.

® activity_generator.rs

& activity_placer.rs

® modrs * Similarly, Suggestions can’t be found here.

V technical They are ‘bounded’ to the Collaboration domain.
& input_output.rs

& mod.rs

& lib.rs

Better together - an app to realize
dreams together.

& ZinZen.me

rust todo privacy offline Wasm

hacktoberfest

[0 Readme

i3 AGPL-3.0 license
A~ Activity

vy 32 stars

& 4 watching

% 50 forks

Contributors 47

$920 GO
v

(75 1y
@z=205H : 6
+ 33 contributors

Inspired?

@

Thanks for listening!
. ®
2%12&1

and thanks to all contributors ;)

Credits for pictures via Unsplash

https://unsplash.com/photos/man-holding-luggage-photo-_g1WdcKcV3w?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/surface-chart-TOZWtE9CkF0?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/boy-sitting-near-table-and-about-to-blow-birthday-candles-jLQvbLPyenU?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/silhouette-of-person-jumping-in-mid-air-2fgnVgsm5uM?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

|[deas to possibly expand upon:

* Explaining an aggregate — with invariance boundaries

* Technical pitfalls :
* testing at the wrong level

* Todo/Task is not an entity — it’s a value object
* What domain events do we have?

* Complexity in scheduling domain due to dates

* Very complicated business logic

e By separating the code into two steps / modules
(Activity generator and Activity placer)
we avoided the mental load/complexity of date-calculations
— reducing placing to ‘does the block size fit in the timeline gap - or not’?

	Slide 1: DDD a Todo app
	Slide 2: Me (or any developer) at some point:
	Slide 3: Current status
	Slide 4: Domain model - version 1 - 2016
	Slide 5: Most people stop here…
	Slide 6: Well… most people don’t think CRUD …
	Slide 7: So how do people really think?
	Slide 8: Domain model - version 2 - 2017
	Slide 9: There – I’m done!
	Slide 10: …of course, once I started thinking…
	Slide 11: My mind, seconds later:
	Slide 12: To put it simply …
	Slide 13: OK. Now it’s complicated.
	Slide 14: So, I skipped DDD and started coding - 2018
	Slide 15: … yes, I CQRS’d + Event Sourced everything
	Slide 16: Intermezzo - 2020
	Slide 17: By 2021 - I had tried a few tech stacks
	Slide 18: What if we aligned our code paradigm with domain properties?
	Slide 19: The first rule of distributed computing…
	Slide 20: Context map - version 3 - 2021
	Slide 21: Added privacy and cost bonus
	Slide 22: Still, we ‘felt’ issues in the Scheduler domain
	Slide 23: … so, we ‘challenged’ the domain expert …
	Slide 24: Surprise!
	Slide 25: Domain from person’s view - v4 - 2022
	Slide 26: .. this also simplified our UI/UX 
	Slide 27: Separating domains has more benefits
	Slide 28: Modules in the Scheduler
	Slide 29: Extra concepts and services
	Slide 30: Inspired?
	Slide 31: Credits for pictures via Unsplash
	Slide 32: Ideas to possibly expand upon:

